Checkout, Frequently Asked Questions!

Using ollama on Ibex#

Here We explain multiple approaches how to Run an example query using Ollama on GPU node on Ibex.

Interactive method with Singularity#

Run the following steps line by line.

# 1. Allocate a GPU node:
srun -N1 --gres=gpu:a100:1 --ntasks=4 --time=1:0:0 --pty bash
# 2. Make target directory on /ibex/user/$USER/ollama_models_scratch to store your Ollama models
export OLLAMA_MODELS_SCRATCH=/ibex/user/$USER/ollama_models_scratch
mkdir -p $OLLAMA_MODELS_SCRATCH
# 3. Load Singularity module
module load singularity
# 4. Pull OLLAMA docker image
singularity pull docker://ollama/ollama
# 5. Change the default port for OLLAMA_HOST: (default 127.0.0.1:11434)
export PORT=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
export SINGULARITYENV_OLLAMA_HOST=127.0.0.1:$PORT
# 6. Change the default model directory stored: (default ~/.ollama/models/manifests/registry.ollama.ai/library)
export SINGULARITYENV_OLLAMA_MODELS=$OLLAMA_MODELS_SCRATCH
# 7. Create an Instance:
singularity instance start --nv -B "/ibex/user:/ibex/user" ollama_latest.sif ollama
# 8. Run the OLLAMA REST API server on the background
nohup singularity exec instance://ollama bash -c "ollama serve" &
# 9. Press Enter to get prompt back
# 10. Execute the query:
## Check available models supported: https://ollama.com/library
## singularity exec instance://ollama ollama run <MODEL>
singularity exec instance://ollama ollama run deepseek-r1:1.5b

To Terminate:

  • Exit the model with /bye or CTRL+d

  • Stop the server in the background using fg command then CTRL+c

Utilizing Ollama in Jupyter Lab#

Initial setup#

If you haven’t installed conda yet, please follow Using conda on Ibex to get started.

After conda has been installed, save the following environemnt yaml file on Ibex under the name ollama_env.yaml

name: ollama_env
channels:
- conda-forge
dependencies:
- _libgcc_mutex=0.1
- _openmp_mutex=4.5
- bzip2=1.0.8
- ca-certificates=2025.7.14
- icu=75.1
- ld_impl_linux-64=2.44
- libexpat=2.7.1
- libffi=3.4.6
- libgcc=15.1.0
- libgcc-ng=15.1.0
- libgomp=15.1.0
- liblzma=5.8.1
- libmpdec=4.0.0
- libsqlite=3.50.3
- libstdcxx=15.1.0
- libstdcxx-ng=15.1.0
- libuuid=2.38.1
- libzlib=1.3.1
- ncurses=6.5
- openssl=3.5.1
- pip=25.1.1
- python=3.13.5
- python_abi=3.13
- readline=8.2
- tk=8.6.13
- tzdata=2025b
- pip:
    - annotated-types==0.7.0
    - anyio==4.9.0
    - argon2-cffi==25.1.0
    - argon2-cffi-bindings==21.2.0
    - arrow==1.3.0
    - asttokens==3.0.0
    - async-lru==2.0.5
    - attrs==25.3.0
    - babel==2.17.0
    - beautifulsoup4==4.13.4
    - bleach==6.2.0
    - certifi==2025.7.14
    - cffi==1.17.1
    - charset-normalizer==3.4.2
    - comm==0.2.2
    - debugpy==1.8.15
    - decorator==5.2.1
    - defusedxml==0.7.1
    - executing==2.2.0
    - fastjsonschema==2.21.1
    - fqdn==1.5.1
    - h11==0.16.0
    - httpcore==1.0.9
    - httpx==0.28.1
    - idna==3.10
    - ipykernel==6.30.0
    - ipython==9.4.0
    - ipython-pygments-lexers==1.1.1
    - ipywidgets==8.1.7
    - isoduration==20.11.0
    - jedi==0.19.2
    - jinja2==3.1.6
    - json5==0.12.0
    - jsonpointer==3.0.0
    - jsonschema==4.25.0
    - jsonschema-specifications==2025.4.1
    - jupyter==1.1.1
    - jupyter-client==8.6.3
    - jupyter-console==6.6.3
    - jupyter-core==5.8.1
    - jupyter-events==0.12.0
    - jupyter-lsp==2.2.6
    - jupyter-server==2.16.0
    - jupyter-server-terminals==0.5.3
    - jupyterlab==4.4.5
    - jupyterlab-pygments==0.3.0
    - jupyterlab-server==2.27.3
    - jupyterlab-widgets==3.0.15
    - lark==1.2.2
    - markupsafe==3.0.2
    - matplotlib-inline==0.1.7
    - mistune==3.1.3
    - nbclient==0.10.2
    - nbconvert==7.16.6
    - nbformat==5.10.4
    - nest-asyncio==1.6.0
    - notebook==7.4.4
    - notebook-shim==0.2.4
    - ollama==0.5.1
    - overrides==7.7.0
    - packaging==25.0
    - pandocfilters==1.5.1
    - parso==0.8.4
    - pexpect==4.9.0
    - platformdirs==4.3.8
    - prometheus-client==0.22.1
    - prompt-toolkit==3.0.51
    - psutil==7.0.0
    - ptyprocess==0.7.0
    - pure-eval==0.2.3
    - pycparser==2.22
    - pydantic==2.11.7
    - pydantic-core==2.33.2
    - pygments==2.19.2
    - python-dateutil==2.9.0.post0
    - python-json-logger==3.3.0
    - pyyaml==6.0.2
    - pyzmq==27.0.0
    - referencing==0.36.2
    - requests==2.32.4
    - rfc3339-validator==0.1.4
    - rfc3986-validator==0.1.1
    - rfc3987-syntax==1.1.0
    - rpds-py==0.26.0
    - send2trash==1.8.3
    - setuptools==80.9.0
    - six==1.17.0
    - sniffio==1.3.1
    - soupsieve==2.7
    - stack-data==0.6.3
    - terminado==0.18.1
    - tinycss2==1.4.0
    - tornado==6.5.1
    - traitlets==5.14.3
    - types-python-dateutil==2.9.0.20250708
    - typing-extensions==4.14.1
    - typing-inspection==0.4.1
    - uri-template==1.3.0
    - urllib3==2.5.0
    - wcwidth==0.2.13
    - webcolors==24.11.1
    - webencodings==0.5.1
    - websocket-client==1.8.0
    - widgetsnbextension==4.0.14

Run the following command to build the conda environemnt.

conda env create -f ollama_env.yaml

Starting JupyterLab#

Follow Jupyter Notebooks to start JupyterLab on a an Ibex GPU node Using your conda environment instead of machine_learning module. By making the following changes to the Jupyter launch script.

#module load machine_learning/2024.01
conda activate ollama_env

Starting the Ollama Server#

Start the OLLAMA REST API server using the following bash script in a terminal:

#!/bin/bash

# Cleanup process while exiting the server
cleanup() {
    echo "🧹   Cleaning up before exit..."
    # Put your exit commands here, e.g.:
    rm -f $OLLAMA_PORT_TXT_FILE
    # Remove the Singularity instance
    singularity instance stop $SINGULARITY_INSTANCE_NAME
}
trap cleanup SIGINT  # Catch Ctrl+C (SIGINT) and run cleanup
#trap cleanup EXIT    # Also run on any script exit

# User Editable Section
# 1. Make target directory on /ibex/user/$USER/ollama_models_scratch to store your Ollama models
export OLLAMA_MODELS_SCRATCH=/ibex/user/$USER/ollama_models_scratch
mkdir -p $OLLAMA_MODELS_SCRATCH
# End of User Editable Section

SINGULARITY_INSTANCE_NAME="ollama"
OLLAMA_PORT_TXT_FILE='ollama_port.txt'

# 2. Load Singularity module
module load singularity

# 3. Pull OLLAMA docker image
singularity pull docker://ollama/ollama

# 4. Change the default port for OLLAMA_HOST: (default 127.0.0.1:11434)
export PORT=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')

# 5. Copy the assigned port, it will be required in the second part during working on the notebook.
echo "$PORT" > $OLLAMA_PORT_TXT_FILE

echo "OLLAMA PORT: $PORT  -- Stored in $OLLAMA_PORT_TXT_FILE"

# 6. Define the OLLAMA Host
export SINGULARITYENV_OLLAMA_HOST=127.0.0.1:$PORT

# 7. Change the default model directory stored: (default ~/.ollama/models/manifests/registry.ollama.ai/library)
export SINGULARITYENV_OLLAMA_MODELS=$OLLAMA_MODELS_SCRATCH

# 8. Create an Instance:
singularity instance start --nv -B "/ibex/user:/ibex/user" ollama_latest.sif $SINGULARITY_INSTANCE_NAME

# 7. Run the OLLAMA REST API server on the background
singularity exec instance://$SINGULARITY_INSTANCE_NAME bash -c "ollama serve"

Note

Save the above script in a file called start_ollama_server.sh

# Run the script to start the Ollama server.
bash start_ollama_server.sh

The script has the following:

  • A user editable section, where the user defines [Ollama models scratch directory].

  • The allocated port is saved in a temporary ollama_port.txt file, in order to be used in the Python notebook to read the assigned port to Ollama server.

  • Cleanup section in order to stop the singularity instance when the script is terminated with CTRL+C.

Using REST API Requests#

Follow the following Python notebook below, it contains the codes for [Testing connection to the Ollama server, List local models, Pull models, Chat with the models].

# ipynb to run OLLAMA using REST API

##----------------##
# Cell #1: OLLAMA Configration
with open("ollama_port.txt") as f :
    PORT = f.read().strip()
BASE_URL = f'http://127.0.0.1:{PORT}'
MODEL= 'llama3' # <>
##----------------##
# Cell #2: Test the server Connectivity
import requests
try:
    r = requests.get(BASE_URL)
    print("Ollama is running!", r.status_code)
except requests.ConnectionError as e:
    print("Ollama is NOT reachable:", e)
# Cell #3: Get list of Local downloaded model
def list_local_models(base_url=BASE_URL):
    r = requests.get(f"{base_url}/api/tags")
    if r.ok:
        models = r.json().get("models", [])
        return [m["name"] for m in models]
    else:
        raise RuntimeError(f"Failed to list models: {r.text}")
## Usage
list_local_models()
##----------------##
# Cell #4: Pull Required Model
## You can check the available models in: https://ollama.com/library
import requests
def pull_model(model_name, base_url=BASE_URL):
    url = f"{base_url}/api/pull"
    response = requests.post(url, json={"name": model_name}, stream=True)
    if response.status_code != 200:
        print("❌ Failed to pull model:", response.text)
        return
    for line in response.iter_lines():
        if line:
            decoded = line.decode("utf-8")
            print(decoded)

## Usage
pull_model("llama3")
##----------------##
# Cell #5: start chatting with the model through /api/chat code
import requests
import json


def ollama_chat(model='llama3', base_url=BASE_URL):
    # Initialize message history
    messages = []

    print("πŸ€– Chat started β€” type 'exit' to quit.\n")

    while True:
        user_input = input("πŸ‘€ You: ")
        if user_input.lower() == 'exit':
            print("πŸ‘‹ Goodbye!")
            break

        # Compose full message payload with system + history
        request_messages = [
            {'role': 'system', 'content': 'You are a helpful assistant. You only give a short sentence by answer.'}
        ] + messages + [{'role': 'user', 'content': user_input}]

        # Start request
        try:
            response = requests.post(
                f"{base_url}/api/chat",
                json={"model": model, "messages": request_messages},
                stream=True
            )

            assistant_reply = ""
            print("πŸ€– Ollama:", end=" ", flush=True)

            for line in response.iter_lines():
                if line:
                    data = json.loads(line.decode("utf-8"))
                    if "message" in data and "content" in data["message"]:
                        chunk = data["message"]["content"]
                        assistant_reply += chunk
                        print(chunk, end='', flush=True)

            print("\n")

            # Add interaction to message history
            messages.append({'role': 'user', 'content': user_input})
            messages.append({'role': 'assistant', 'content': assistant_reply})

        except Exception as e:
            print("\n⚠️ Error:", e)

ollama_chat(model='qwen3')

Using the Ollama Python Package#

Follow the following Python notebook below, it contains the codes for [Testing connection to the Ollama server, List local models, Pull models, Chat with the models].

##----------------##
# Cell #1: Ollama Configuration
with open("ollama_port.txt") as f :
    PORT = f.read().strip()
BASE_URL=f"http://127.0.0.1:{PORT}"
print(BASE_URL)
##----------------##
# Cell #2: Create Ollama Client
from ollama import Client
client = Client(
    host=BASE_URL,
    headers={'x-some-header': 'some-value'}
)
##----------------##
# Cell #3: List Local Models
def get_local_models():
    for model in client.list()['models']:
        print(model['model'])

get_local_models()

##----------------##
# Cell #4: Pull the required model
client.pull("gemma3")
##----------------##
# Cell #4: Send an example query to the model using the client
response = client.chat(model='llama3', messages=[
    {
        'role': 'user',
        'content': 'Why is the sky blue?',
    },
])
response['message']['content']
##----------------##
# Cell #5: Streaming
stream = client.chat(
    model='gemma3',
    messages=[{'role': 'user', 'content': 'Why is the sky blue?'}],
    stream=True,
)

for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
##----------------##
# Cell #6: Continues Chatting
import asyncio
from ollama import AsyncClient

# Stores full conversation history
messages = []

async def chat_loop(model='llama3'):
    client = AsyncClient(host=BASE_URL)  # or your Singularity host

    print("πŸ€– Chat started β€” type 'exit' to quit.\n")

    while True:
        user_input = input("πŸ‘€ You: ")
        if user_input.lower().strip() in {"exit", "quit"}:
            print("πŸ‘‹ Goodbye!")
            break

        # Add user input to history
        messages.append({"role": "user", "content": user_input})

        print("πŸ€– Ollama:", end=" ", flush=True)
        assistant_reply = ""

        async for chunk in await client.chat(
            model=model,
            messages=messages,
            stream=True
        ):
            if chunk.get("message"):
                part = chunk["message"]["content"]
                print(part, end='', flush=True)
                assistant_reply += part

        print("\n")  # Newline after full reply

        # Add assistant reply to history
        messages.append({"role": "assistant", "content": assistant_reply})

# In Jupyter, run with `await chat_loop()`
# In CLI script, run with:
# asyncio.run(chat_loop())
await chat_loop()`

Below are attached screenshot from JupyterLab:

connect to Server

JupyterLab - Testing connection to Ollama Server#

Chat with model

JupyterLab - Testing Chatting with Ollama model#

Execution Output#

Running the OLLAMA REST API server output:

singularity run --nv -B "/ibex/user:/ibex/user" ollama_latest.sif

time=2025-07-17T14:54:15.667+03:00 level=INFO source=routes.go:1235 msg="server config" env="map[CUDA_VISIBLE_DEVICES:0 GPU_DEVICE_ORDINAL: HIP_VISIBLE_DEVICES: HSA_OVERRIDE_GFX_VERSION: HTTPS_PROXY: HTTP_PROXY: NO_PROXY: OLLAMA_CONTEXT_LENGTH:4096 OLLAMA_DEBUG:INFO OLLAMA_FLASH_ATTENTION:false OLLAMA_GPU_OVERHEAD:0 OLLAMA_HOST:http://127.0.0.1:40155 OLLAMA_INTEL_GPU:false OLLAMA_KEEP_ALIVE:5m0s OLLAMA_KV_CACHE_TYPE: OLLAMA_LLM_LIBRARY: OLLAMA_LOAD_TIMEOUT:5m0s OLLAMA_MAX_LOADED_MODELS:0 OLLAMA_MAX_QUEUE:512 OLLAMA_MODELS:/ibex/user/solimaay/support/cases/63115-ollama-singularity/ollama_models-scratch/ OLLAMA_MULTIUSER_CACHE:false OLLAMA_NEW_ENGINE:false OLLAMA_NOHISTORY:false OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:0 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:* app://* file://* tauri://* vscode-webview://* vscode-file://*] OLLAMA_SCHED_SPREAD:false ROCR_VISIBLE_DEVICES: http_proxy: https_proxy: no_proxy:]"
time=2025-07-17T14:54:15.670+03:00 level=INFO source=images.go:476 msg="total blobs: 0"
time=2025-07-17T14:54:15.671+03:00 level=INFO source=images.go:483 msg="total unused blobs removed: 0"
time=2025-07-17T14:54:15.673+03:00 level=INFO source=routes.go:1288 msg="Listening on 127.0.0.1:40155 (version 0.9.6)"
time=2025-07-17T14:54:15.674+03:00 level=INFO source=gpu.go:217 msg="looking for compatible GPUs"
time=2025-07-17T14:54:16.158+03:00 level=INFO source=types.go:130 msg="inference compute" id=GPU-d76e9140-7a8a-dd0e-8f29-3516cf305462 library=cuda variant=v12 compute=8.0 driver=12.8 name="NVIDIA A100-SXM4-80GB" total="79.3 GiB" available="78.8 GiB"

Running example query for deepseek-r1:1.5b :

singularity run --nv -B "/ibex/user:/ibex/user" ollama_latest.sif run deepseek-r1:1.5b

pulling manifest
pulling aabd4debf0c8: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 1.1 GB
pulling c5ad996bda6e: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  556 B
pulling 6e4c38e1172f: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 1.1 KB
pulling f4d24e9138dd: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  148 B
pulling a85fe2a2e58e: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  487 B
verifying sha256 digest
writing manifest
success
>>> hello, do you have access to the internet to do some research?
Hi! I'm DeepSeek-R1, an AI assistant independently developed. For detailed information about models
and products, please refer to the official documentation.

>>> Send a message (/? for help)

Running example query for llama3

singularity exec --nv ollama_latest.sif ollama run llama3

pulling manifest
pulling 6a0746a1ec1a: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.7 GB
pulling 4fa551d4f938: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  12 KB
pulling 8ab4849b038c: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  254 B
pulling 577073ffcc6c: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  110 B
pulling 3f8eb4da87fa: 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  485 B
verifying sha256 digest
writing manifest
success
>>>
Use Ctrl + d or /bye to exit.
>>> hello
Hello! It's nice to meet you. Is there something I can help you with, or would you like to chat?

>>> what time is now?
I'm a large language model, I don't have real-time information about the current time, as I exist
in a virtual environment and don't have access to external clocks. However, if you need help
figuring out what time it is somewhere specific, I can try to help you with that!

>>> do you have access to internet?
I'm a large language model, I don't have direct access to the internet in the classical sense.
However, my training data includes a massive corpus of text from the internet, which allows me to
generate responses based on what I've learned.

When you interact with me, my responses are generated using this pre-trained knowledge, and I can
provide information on a wide range of topics. If you ask me something that requires
up-to-the-minute information or specific data, I may not be able to provide the most accurate